DIVERSEAF ''OD

P. Katic^a, M. Sharmina^b, L. Panzone^c, A. Gatto^a, C. Fletcher^b, L. Rehackova^c, A. MacDonald^d, S.C. Franco^{d*}

^a Natural Resources Institute, University of Greenwich, Kent, UK; ^b Tyndall Centre for Climate Change Research, University of Manchester, Manchester, UK; ^c School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK; ^d Scottish Association for Marine Science, Oban, UK; <u>sofia.franco@sams.ac.uk</u>

Evaluating the potential of IMTA to build RESILIENCE of aquaculture systems in the UK

Theory and objectives

- Change is integral to aquaculture socioecological and economic systems, and its consideration in aquaculture management systems is key to assure resilience.
- **Diversifying seafood consumption and production**, through sustainable approaches such as Integrated multi-trophic aquaculture (IMTA), could improve resilience of aquaculture systems to changes and derive sustainable benefits.

Development of a bioeconomic model to value ecosystem services in IMTA systems

To develop a bioeconomic model for resilience management of aquaculture systems, the following steps are proposed as a base to operationalize resilience in socio-ecological aquaculture systems, from an interdisciplinary perspective, and understand the role of IMTA in resilience management.

• We define resilience in aquaculture systems and present a framework to investigate the role of IMTA in increasing systems' resilience.

Defining resilience

- **Resilience of what? UK aquaculture**, to be able to (i) sustainably and profitably produce diverse and nutrient-rich seafood, (ii) operate under sustainable business models, suitable policyframeworks and be socially acceptable, (iii) market and increase consumption of a diverse range of healthy and sustainable seafood;
- **Resilience to what?** (i) **Environmental stresses** (e.g. variability, ecological/biogeochemical/ water quality deterioration) and shocks (e.g. HABs, disease outbreaks); (ii) Market, economic and political shocks and stresses (e.g. competition, supply); (iii) Sociocultural and institutional shocks and stressors (e.g. social acceptability of aquaculture sites, regulatory

STEP 1: Identification of the key steps of resilience management

ystem definition, oundaries and drivers	Stakeholders	Metrics	Viability goals and metrics	Adverse events	Quantification of resilience measurements	Resilience management actions
Anoculture systems vs. ATA systems. ystem dynamics depend n biological mechanisms e.g. growth, survival), arming operations (e.g. eed, farm size, stocking ensity/weight, arvestable weight, roduction time), and nvironmental drivers e.g. temperature, IN/POM/Chl _a , ydrodynamics).	Producers, consumers, regulators, community residents and NGOs.	Estimates and indicators of performance (e.g. biomass, FCR, survival, yield), profitability (e.g. gross income/margin, profit/PI), environmental sustainability (e.g. fish farm discharges)	Minimum profit levels, variability, carrying capacity and other environmental interactions/ thresholds.	Losses or interruptions of production due to HABs predation, disease outbreaks, net/rope failure/loss, market crashes, etc.	Resistance: viability analysis of key environmental variables Recovery: responses to regime shifts, climate change and socio- economic shocks Robustness: probability of producer profits not falling below pre- defined thresholds.	Active adaptive management as a response to unpredictable and adverse events.

Abbreviations: DIN dissolved inorganic nutrients; POM particulate organic matter; Chl_a chlorophyll a, NGOs non-governmental organisations, FCR feed conversion ration, PI profitability index, HABs harmful algal blooms.

STEP 2: Contextualisation of key steps using a bioeconomic model

- reform, demographic changes);
- **Resilience for whom?** Producers (e.g. profit diversification), supply chain (e.g. increased volumes), retailers (e.g. product range, steady supply), consumers (e.g. facilitated healthier/ sustainable consumption), citizens (e.g. higher environmental responsibility); etc.
- **Resilience over what time period**? Long-term, though improvements at some levels (e.g. consumers) can be absorbed quicker.

DIVERSEAFOOD at a glance

What optimises the socioeconomic benefits of sustainably diversifying aquaculture?

Which factors increase consumer purchase of seafood? What drives acceptance of novel seafood?

Acknowledgments

DIVERSEAFOOD is funded through the Global Food Security's Resilience of the UK Food System Programme with support from BBSRC, ESRC, NERC and Scottish Government.

SOURCES & USEFUL READINGS

Granada et al. (2016). Is integrated multitrophic aquaculture the solution to the sectors' major challenges? - a review. Reviews in Aquaculture, 8(3), 283-300.

Helfgott (2018). Operationalising systemic resilience. European Journal of Operational Research, 268(3), 852-864.

Klinger & Naylor (2012). Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annual Review of Environment and Resources, 37(1), 247-276.

Troell et al. (2014). Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences, 111(37), 13257-13263.

1. Optimal harvest rate LTURE of salmon

IMTA

2. Net present value of profits 3. Optimal water quality and sedimentation

WHAT'S BEST

V.

1. Optimal harvest rate of salmon and co-cultured species 2. Net present value of profits

3. Optimal water quality and sedimentation

Difference in OPTIMAL MANAGEMENT: deterministic viability goals

Difference in SIMULATION: viability goals under different scenarios

WHAT IF:

ALTERNATIVE SCENARIOS

Variation in 1, 2 & 3 under

different scenarios of:

d. Bio & env parameters

e. Regulatory standards

V.

Variation in 1, 2 & 3 under

different scenarios of:

d. Bio & env parameters

e. Regulatory standards

a. Investment costs

b. Seafood prices

c. Discount rate

a. Investment costs

b. Seafood prices

c. Discount rate

Quantification of resilience measurements under stochastic stresses & unpredictable shocks in: a. Investment costs b. Seafood prices d. Bio & env events

WHAT IF:

STRESSES & SHOCKS

V.

Quantification of resilience measurements under stochastic stresses & unpredictable shocks in: a. Investment costs b. Seafood prices d. Bio & env events

Difference in RESILIENCE MANAGEMENT: resilience measurements (resistance, recovery & robustness)

STEP 4: Next steps

Parameterise the bioeconomic model, calculate relevant metrics, analyse its results and resilience implications.

Have your say. Scan the QR code and leave us your feedback.

Price &

market

shocks

innovation

Regulatory

changes